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Abstract Introduction 

On the basis of some mathematical and physical 
characteristics of isomorphous-replacement experi- 
ments, it has been possible to derive a simple rule called 
Rlso that permits the selection of those triplet phase 
invariants that have values close to zero or 7~. Test 
examples show that large numbers of invariants may be 
evaluated by means of R~s o with reliabilities that are 
potentially high, but depend, of course, on the reliability 
of the experimental data. In order to apply the rule, it is 
not necessary to know the chemical nature of the 
substituent atoms, their positions in the structure or 
their occupancy. The rule R~s o affords new insights into 
the inter-relationships among isomorphous-replace- 
ment data and an alternative selection method to the 
use of the conditional joint probability distribution. A 
formula has also been derived for estimating the value 
of the cosine of triplet phase invariants for the native 
substance, cos (q~he + (~kP + (~(la+l~)P), in terms of 
measured structure-factor magnitudes and structure- 
factor magnitudes associated with the contribution 
from substituent atoms. 

0108-7673/83/050800-06501.50 

Isomorphous-replacement experiments provide infor- 
mation that is quite useful in selection procedures for 
finding large numbers of triplet phase invariants, whose 
values are close to zero or ~ even in very complex 
structures. One such procedure has already been 
described by Hauptman (1982a), in which the concept 
of the conditional joint probability distribution has been 
applied to the isomorphous-replacement technique, 
resulting in a formula whose validity has been 
demonstrated in an extensive test calculation 
(Hauptman, Potter & Weeks, 1982), The various 
conceptual aspects and features of the joint probability 
distribution distinguish the latter approach from the 
one pursued in this article. 

The joint probability distribution, as generally used 
in crystallography and from which the conditional 
distribution is derived, may be viewed as counting the 
relative number of atomic configurations (each given 
unit weight) associated with some infinitesimal volume 
in the space of the variables, say E 1 . . . . .  tp~,.... In 
those cases where some small region of the space is 
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associated with a disproportionately large fraction of 
the possible atomic configurations, the values of the 
variables can be determined within narrow bounds. 
Such a circumstance can be interpreted as indicating 
that the values of the variables are known within 
narrow ranges with high probability, since most, by far, 
of the possible atomic configurations are consistent 
with those values of the variables, and the unknown 
configuration or structure of interest is likely to be 
among them. A conditional distribution derivable from 
the joint probability distribution answers the question 
'What relative density of only those atomic con- 
figurations that are compatible with given fixed values 
of some of the initial variables is to be associated with 
particular values of the remaining variables?'. 

This is illustrated in Fig. 1 in which the quantity J'2 
could represent the possible values of a triplet phase 
invariant. The ordinate can simply be labeled P(D) or, 
alternatively, it can represent the relative density of all 
those configurations that give specific fixed values for 
six structure-factor magnitudes assumed to be known 
for a triplet phase invariant in an isomorphous- 
replacement experiment. The sharply peaked distri- 
bution shows that most of the configurations, among 
which the configuration of the crystal structure of 
interest is likely to be found, favor values for the triplet 
invariant within narrow bounds. We can then pick the 
value of the maximum of the distribution, and expect it 
to represent the triplet invariant with high probability 
and small variance. The flatter distribution in Fig. 1 
would not be useful. There would be little assurance 
that the broad maximum would be related to the 
structure of interest. If use of the relative number of 
atomic configurations associated with particular values 
of the variables is inherent in the derivation of the joint 
probability distribution, it is necessary to know the 
chemical composition of the structure of interest. 

It. 
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Fig. I. A fairly sharply peaked and a relatively flat probability 

distribution. The main point of this figure is to emphasize that the 
probability density P(D) is based on the density of atomic 
configurations, i.e. those values of D associated with the greatest 
densities of atomic configurations are considered the most 
probable. 

In this article, the analysis is based on some simple 
physical and mathematical properties associated with 
isomorphous-replacement experiments. These concern 
observations related to the differences of the mag- 
nitudes of the structure factors for the substituted and 
unsubstituted structures and the expected values of 
triplet phase invariants associated with the 'heavy'- 
atom structure. This approach does not require the 
scanning of atomic configurations nor is there a need to 
know the chemistry of the structure of interest or of the 
substituent atoms. The result is a simple rule, based on 
the observed structure-factor magnitudes, that permits 
the selection of triplet phase invariants whose values 
are close to zero or n. 

Conceptual basis 

The concepts involved in the development of the rule of 
interest are illustrated in Fig. 2. In this diagram, the 
larger circle has a diameter I F e n l  , a structure-factor 
magnitude associated with the combination of the 
unsubstituted structure (P) and substituent atoms (H). 
The smaller circle has a diameter I F e l  , a structure- 
factor magnitude associated with the unsubstituted 
structure. The quantity F n is the structure factor for the 
substituent atoms. 

Im 

Re 

"Fig. 2. An illustration of the vector equation, Fen = Fp + F n. The 
largest magnitude differences, ]IF~,nl - IFplJ, are associated 
with the largest possible values of IFnl. This case is represented 
by the triangle formed from solid lines. The placement of the 
dotted line, representing an alternative position for Fp, would 
not be possible if the magnitude of the dotted line connecting 
it to Fpu would exceed the maximum possible value. This 
implies that, for the largest magnitude differences, the phase 
angles for Fen and F~, do not differ by much. 
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The solid lines forming a closed triangle in Fig. 2 
represent the vector equation 

F u =  Fen-- Fe. (1) 

Given, for example, the vector Fen as in Fig. 2, the 
dotted line of radius IF el could perhaps be a possible 
location for F e, but not necessarily. It would not be 
possible if the dotted line connecting this vector with 
Fvu would have to have a magnitude that exceeds the 
maximum possible value for I Fnl.  The implication of 
this observation is that if the largest differences [IFenl 
-- I Fvl] are selected from a data set, they would be 
associated with the largest possible values of Ignl and 
Fen and Fe would have phases that do not differ 
greatly. We formalize these observations and their 
implications as follows: 

1. The largest magnitude differences, ]lFvnl - IFvl[, 
are associated with the largest values of the magnitudes 

2. Triplet phase invariants associated with the 
largest IF~FknFr,+f, ml can be expected to have values 
close to zero, especially for simple heavy-atom 
structures. 

3. For the larger values of llFvul - lEvi I, the phase 
of Fv, ~h,, will differ little in value from the phase of 
Fen, ~ovu. 

Theory 

Der&ation o f  R iso 

We start with (1), add additional subscripts to 
indicate the association of structure factors with 
reciprocal vectors and form the products 

FhHFkHF(fi + fOH = ( F~H -- Ftw )( Fkm-i -- Fke ) 

x (F(h+~)p u -- F(h+k)e). (2) 

I FhHFkHF(h+(OHI exp[i(~u + ¢Pku + tP(h+k)n)] 

= I FheuFkenF(fi+k)vHlexp[i(cPheH + ~l~H "4- (P(h+I~)PH)] 
-IFheuFkeF(h+k)enl exp[i(q~en + ~ + tp(h+k)~,n)] 

--IFhPHFkeHFr,+f,)pl exp[i(~pH + q~keH + ~P(h+k)e)] 

+ IFheHFkeF(h+f,)el exp[i(q~en + ~ + ¢P(h+k)e)] 

--IF~FkpHF(h+~,)vnl exp[i(~p + q~H + ~P(fi+k)Pn)] 

+ IFheFkpF(fi+k)t,H I exp[i(~e + ~ e +  ~P(h+k)eH)] 

+ IFheFkeHF(f,+f,)el exp[i(g~ + ~ ' H  + ¢P(h+k)V)] 

--IFhpFkeF(i,+f,)el exp[i(~p + ~ e  + ~P(h+k)P)]" (3) 

On the basis of observation 3 above, (3) may be 
written, to good approximation, 

IFhHFkHF(h+fOH l exp[i(fPhH!+ ~H + ~0(I]+I~)H)] 

--IF(h+kWl)"exp[i(q~h + ~Pk + ~Ph+~)], (4) 

where (~0h + ~0k + 0~+U)represents the average of the 
eight triplet phase invariants on the right side of (3). 

On the basis of observations 1 and 2 above, the left 
side of (4) is essentially a real positive number and if 
the heavy atoms have a centric configuration in the unit 
cell, it is precisely so. Therefore, when the triple 
product on the right side of (4) is composed of large 
magnitude differences, an examination of this equation 
leads to the following rule: 

Rule ,  Riso: I f  the sign o f  the product o f  the 
magnitude differences, (IFhenl -- I FhpI)(IFkpnl -- 
IFkfl)(IF(f,+~)m-ll -- IF(h+kwl), is plus, the value of  the 
average invariant, (~Oh + ~Ok + ~Oh+k), is close to zero 
and i f  the sign o f  the product is minus, the value o f  the 
average invariant is close to n. 

This rule, in effect, assigns the estimate to all eight 
triplet invariants in (3). As a modification of Ris o, the 
estimates may be assigned only to those triplet phase 
invariants that are associated with the larger products 
of structure-factor magnitudes listed among the eight 
possibilities given in (3), instead of to all eight of them. 
Test calculations indicate that improved accuracy may 
be obtained this way. 

The effect of rescaling the F, to represent approxi- 
mately structure factors from point atoms, on the 
application of Rls o has not yet been investigated. The 
question is whether optimal application of Ris o would 
involve use of F for real atoms or point atoms or both 
types or even some intermediate form. 

Interpretation o f  the triple product o f  magnitude 
differences 

We now investigate the meaning of 

( I V h p . I  - I r h p l ) ( I V k ~ . l  - I V k ~ l )  

× (IFeh+KWHI -- IF(h+kwl) (5) 

under the circumstances that the differences are of 
large magnitude and the contribution, F n, of the 
substituted atoms is much smaller in magnitude than 
the contribution from the remaining atoms, Fp. This 
usually pertains with macromolecules. 

It follows from (1) that 

IFhpHI 2= IF~I 2 + IFhnl 2 + 21FhpllFhnl 

x cos (tphe-- ¢Phn). (6) 

Since it is assumed that I F hill ,~ I Fhel, we have, to 
good approximation, 

I F~nl  - -  I Fhpl ~-- l F hill COS(Opt, -- ~n ) .  (7) 

If the product (5) is formed from (7), we obtain the 
factor 

cos(~0hp - ~Oh~) COS(~0kp - ~n)  

x COS(~0(h+k)p- ~0(h+k)H)= C3. (8) 
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By use of the addition theorem for cosines, it can be 
easily shown that 

C 3 = ¼[cos J + c o s ( J -  2~p + 2~n)  

+ c o s ( J -  2¢pu P + 2~n)  

+ cos ( J -  2(0(fi+~)p + 2~0(h+k)H)], (9) 

where 

J = ~0hp + ~0u, + ~O(h+k)p- ~u- ~ n -  ~O(h+k)H. (10) 

It is seen that J is composed of a triplet phase invariant 
for the structure P and a corresponding one for the 
substituent atoms. 

Examination of (7) shows that the largest dif- 
ferences in magnitude occur when cos(qhp - ~H) is 
close to + 1 or --1, i.e. the two angles differ approxi- 
mately by zero(mod 2n) or by n(mod 2n). Therefore, 
the difference, 2~0he - 2~H, is approximately zero(mod 
2n). This observation permits us to approximate (9) to 

C 3 ~_ cos J (11) 

and so, by use of (8) and (11), the triple product of 
differences formed from (7), and the high probability 
that the triplet phase invariant for the H structure has a 
value close to zero, we obtain the formula for a triplet 
phase invariant associated with the P structure, 

COS(Cphe + ¢Pke + q~(fi+k)P) "~ {(IF~/./I -- IFhel) 

× ( I F u , n l -  IFu, I) 

x (IF(fi+~)enl -- IF(h+k)pl)} 

x [IFhl-lFkzF(fi+~)nl ]-1. 
(12) 

Expression (12) shows once again that the sign of the 
triple product of the magnitude differences determines 
whether the phase invariant is close to zero or close 
to n. 

It would appear from (12) that given information 
concerning the denominator on the right side, it might 

be possible to make an approximate determination of 
the value of the cosine of the invariant. The usefulness 
of (12) in this respect is very much dependent upon the 
accuracy of the experimental data. 

Test calculations 

Model calculations were performed on quinidine 
sulfate, ( C 2 0 H 2 5 N 2 0 2 ) 2 S O 4 . 2 H 2 0  (Karle & Karle, 
1981), which crystallizes in space group P21. In order 
to form isomorphous pairs, with relative scattering 
power between the H and P structures comparable to 
that in macromolecules, two artificial pairs were 
created by defining, in one case, the native substance 
(P) as the structure with sulfur removed and the 
heavy-atom derivative (PH) as the complete molecule, 
and, in the second case, the native substance as the 
structure with sulfur and one oxygen atom removed 
and the heavy-atom derivative as the structure obtained 
by replacing the missing sulfur and oxygen atoms by 
two magnesium atoms. Both isomorphous pairs gave 
the same general results. Products of magnitude 
differences, as appear on the right side of (4), were 
generally composed from the 150 largest magnitude 
differences and ordered with the largest product first. 
Hundreds of triplet phase invariants were estimated to 
be 0 or n by use of Rule, Riso, as  indicated in Tables 1 
and 2. The factor (× 8) in Tables 1 and 2 implies that all 
eight triplet phase invariants on the right side of (3) are 
evaluated by the estimates. This is also indicated by the 
letter A which implies that the average values of the sets 
of eight invariants are used to estimate the average 
errors. In the case of centric reflections for which the 
triplet phase invariants must have the value of 0 or n, 
all the estimates made were correct without exception 
and all eight triplet phase invariants, as listed on the 
right side of (3), were found to have the same value. 
For the invariants composed from acentric reflections, 
Tables 1 and 2 show that an improvement in accuracy 

Table 1. Estimates of values of triplet phase invariants from isomorphous replacement for quinidine sulfate based 
on isomorphous pair formed from presence and absence of sulfur 

Actual Average 
Type of  Number  of  Number  of  average Invariant error 

invariant data invariants Estimate value selection* (rad) 

Centric 516 62 (× 8) 0 0 A 
Centric 516 38(x 8) n n A 
Acentric 2354 54 0 0-13 L 
Acentric 2354 45 n -2 .93  L 
Acentric 2354 55(×8) 0 0.04 A 
Acentric 2354 45(×8) n -2 .99  A 
Acentric 2354"I" 100 0 -0 .05  L 

0 
0 

0.38 

0.57 

0.30 

* L means errors and averages are based on the value of the triplet phase invariant associated with the largest product of structure-factor magnitudes 
and A means that they are based on the average values of the eight possible invariants formed for a given h, k, h + k. 

# Sulfur atom is replaced by iodine atom. 
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is obtained when estimates are assigned to invariants 
associated with the largest product of structure-factor 
magnitudes rather than to the average of all eight 
invariants associated with a given triple product of 
magnitude differences. Table 2 also shows that the 
average error for invariants composed from acentric 
reflections remains quite small as the number of data, 
i.e. the number of independent structure-factor magni- 
tudes in P (or PH) used for the calculation, decreases, 
rising somewhat only when the number of data is 
reduced to 412. The examples given in Tables 1 and 2 
are just a small sample of the thousands of triplet phase 
invariants that are accessible to evaluation in these 
relatively simple test structures. 

An additional test of Ris o may be derived from 
Table 2 of Hauptman, Potter & Weeks (1982). This 
table lists results of estimates, based on probability 
theory, for triplet phase invariants generated by an 
isomorphous pair involving cytochrome 550. It also 
lists the six normalized structure-factor magnitudes 
associated with each triplet phase invariant evaluated 
for the isomorphous pair. There is good cor- 
respondence here between the relative values of 
normalized structure factors and those of structure 
factors, although it is not perfect because the scale 
factor for forming normalized structure factors for the 
structure labeled PH is not the same as that for P. If 
this point is ignored and the normalized structure 
factors, as given, are substituted for the structure 
factors in applying R~s o to Table 2 of Hauptman et aI. 
(1982), it is seen that R~s o applies without exception to 
the sample of 50 invariants that are listed. 

Concluding remarks 

In view of the potential for determining the values of 
triplet phase invariants by probability methods and 

Rls o, it is reasonable to inquire how this may affect 
procedures for phase determination based on the 
isomorphous-replacement technique. Those invariants 
that may be known exactly because they are made up 
of centric reflections are immediately available for 
phase determination and phase refinement. In addition, 
general triplet phase invariants whose values are known 
with some uncertainty may be used in procedures for 
phase refinement involving the tangent formula or least 
squares. It would appear that, for instances as complex 
as macromolecules, the uncertainties associated with 
the values of the invariants could very well interfere 
with carrying out a stepwise phase-determination 
procedure comparable to that used for small structures. 

Besides questions associated with the added un- 
certainties in the value of triplet phase invariants that 
arise from experimental error, there is another matter of 
considerable importance that ought to be considered 
before formulating strategies for application of the 
theoretical developments. It concerns the fact that the 
collection of isomorphous-replacement data is usually 
associated with definitive anomalous dispersion effects. 
Anomalous dispersion data can add greatly to 
analytical facility. The technique has a long history of 
application (Ramaseshan & Abrahams, 1975). The 
many established procedures for using isomorphous 
replacement and anomalous dispersion data and newer 
theoretical developments, that have not yet been applied, 
such as an exact algebraic analysis of multiwavelength 
anomalous dispersion experiments (Karle, 1980) and 
estimates of triplet phase invariants from anomalous 
dispersion data (Heinerman, Krabbendam, Kroon & 
Spek, 1978; Hauptman, 1982b; Karle, 1983), should 
all be taken into account in formulating new strategies 
for phase determination. The recent developments in 
experimental techniques associated with synchrotron 
radiation such as, for example, large anomalous 

Table 2. Estimates of values of triplet phase invariants-from isomorphous replacement based on isomorphous pair 
formed from replacement of a sulfur and an oxygen atom by 2 Mg atoms in quinidine sulfate and the absence of 

both atoms 

Actual 
Type of  Number  of  Number  of  average 

invariant data invariants value 

Acentric 
Acentric 
Acentric 
Acentric 
Acentric 
Acentric 
Acentric 
Acentric 
Acentric 
Acentric 
Centric 
Centric 

2354 64 
2354 36 
2354 64(x8) 
2354 36(x8) 
1994 64 
1994 36 
806 64 
806 36 
412 63 
412 37 
137 61(x8) 
137 39(x8) 

Average 
Invariant error 

Estimate selection* (rad) 

0 0.02 L 0-29 
zr 3.08 L 0-30 
0 -0 .04  A 0.48 
~z 3.07 A 0-59 
0 0.03 L 0.30 
zt 3.09 L 0.31 
0 0.02 L 0.30 
zr 3.13 L 0.31 
0 0.15 L 0.48 
n 3.10 L 0-56 
0 0.00 A 0.00 
7t 3.14 A 0.00 

* See Table 1. 
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dispersion effects for cesium and a number of other 
heavy atoms at the LII ~ absorption edge (Phillips, 
Templeton, Templeton & Hodgson, 1978), the virtue of 
taking advantage of even small effects in anomalous 
dispersion (Hendrickson & Teeter, 1981) and ap- 
paratus for making simultaneous measurements of 
anomalous dispersion over a range of wavelengths 
(Arndt, Greenhough, Helliwell, Howard, Rule & 
Thompson, 1982), combined with the advancing 
theoretical results, will provide a broad range of 
opportunities to test and develop optimal procedures. 

I am very grateful to Mr Stephen Brenner for making 
the computations reported here. 

This research was supported in part by USPHS 
grant GM30902. 
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Abstract 

A discussion of the relationship between the symmetry 
of bicrystals and the resulting symmetry of convergent- 
beam electron diffraction (CBED) patterns is pre- 
sented. For this purpose bicrystal symmetry is defined 
from the symmetry of the dichromatic pattern or 
complex formed by the interpenetrating lattices or 
structures of the individual crystals in a bicrystal. The 
interrelation between the possible coloured point 
groups and the diffraction groups, characterizing the 
symmetry of a CBED pattern, is established. These 
results are illustrated by a determination of the 
symmetry of thin twinned Au crystals from suitable 
CBED patterns. These experiments give information 
about the state of relative translation of the two crystals 
at the grain boundary and are consistent with the state 
of zero translation expected for a (111) coherent twin 

* To whom all correspondence should be addressed. 
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boundary in Au. It is pointed out that the interpretation 
of the CBED pattern symmetry may be complicated by 
a non-ideal location of the boundary plane in a 
bicrystal. 

1. Introduction 

It is now well established that the symmetry of single 
crystals may be determined in a reliable manner using 
the technique of convergent-beam electron diffraction 
(CBED). The relation between the symmetry of CBED 
patterns and crystal symmetry has been discussed by 
several authors (Goodman, 1975; Tinnappel, 1975; 
Buxton, Eades, Steeds & Rackham, 1976). In par- 
ticular, Buxton et al. (1976) have presented a sys- 
tematic classification of the symmetry of CBED 
patterns in terms of 31 diffraction groups, which is a 
very useful tool for crystal symmetry determination. 

This paper is concerned with the application of 

© 1983 International Union of Crystallography 


